首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2418篇
  免费   181篇
  国内免费   326篇
  2024年   2篇
  2023年   38篇
  2022年   71篇
  2021年   67篇
  2020年   73篇
  2019年   134篇
  2018年   141篇
  2017年   96篇
  2016年   91篇
  2015年   96篇
  2014年   181篇
  2013年   233篇
  2012年   77篇
  2011年   116篇
  2010年   128篇
  2009年   184篇
  2008年   180篇
  2007年   151篇
  2006年   125篇
  2005年   111篇
  2004年   94篇
  2003年   91篇
  2002年   82篇
  2001年   29篇
  2000年   25篇
  1999年   36篇
  1998年   24篇
  1997年   21篇
  1996年   21篇
  1995年   21篇
  1994年   20篇
  1993年   16篇
  1992年   15篇
  1991年   12篇
  1990年   9篇
  1989年   9篇
  1988年   7篇
  1987年   12篇
  1986年   7篇
  1985年   8篇
  1984年   12篇
  1983年   7篇
  1982年   16篇
  1981年   8篇
  1980年   10篇
  1979年   6篇
  1978年   5篇
  1977年   4篇
  1975年   1篇
  1973年   1篇
排序方式: 共有2925条查询结果,搜索用时 15 毫秒
31.
Exposure of endothelium to a nominally uniform flow field in vivo and in vitrofrequently results in a heterogeneous distribution of individual cell responses. Extremes in response levels are often noted in neighboring cells. Such variations are important for the spatial interpretation of vascular responses to flow and for an understanding of mechanotransduction mechanisms at the level of single cells. We propose that variations of local forces defined by the cell surface geometry contribute to these differences. Atomic force microscopy measurements of cell surface topography in living endothelium both in vitro and in situ combined with computational fluid dynamics demonstrated large cell-to-cell variations in the distribution of flow-generated shear stresses at the endothelial luminal surface. The distribution of forces throughout the surface of individual cells of the monolayer was also found to vary considerably and to be defined by the surface geometry. We conclude that the endothelial three-dimensional surface geometry defines the detailed distribution of shear stresses and gradients at the single cell level, and that there are large variations in force magnitude and distribution between neighboring cells. The measurements support a topographic basis for differential endothelial responses to flow observed in vivo and in vitro. Included in these studies are the first preliminary measurements of the living endothelial cell surface in an intact artery.  相似文献   
32.
Secondary metabolic-energy-generating systems generate a proton motive force (pmf) or a sodium ion motive force (smf) by a process that involves the action of secondary transporters. The (electro)chemical gradient of the solute(s) is converted into the electrochemical gradient of protons or sodium ions. The most straightforward systems are the excretion systems by which a metabolic end product is excreted out of the cell in symport with protons or sodium ions (energy recycling). Similarly, solutes that were accumulated and stored in the cell under conditions of abundant energy supply may be excreted again in symport with protons when conditions become worse (energy storage). In fermentative bacteria, a proton motive force is generated by fermentation of weak acids, such as malate and citrate. The two components of the pmf, the membrane potential and the pH gradient, are generated in separate steps. The weak acid is taken up by a secondary transporter either in exchange with a fermentation product (precursor/product exchange) or by a uniporter mechanism. In both cases, net negative charge is translocated into the cell, thereby generating a membrane potential. Decarboxylation reactions in the metabolic breakdown of the weak acid consume cytoplasmic protons, thereby generating a pH gradient across the membrane. In this review, several examples of these different types of secondary metabolic energy generation will be discussed.  相似文献   
33.
利用蛋白质主链的极性分数及主链二面角为参量,构建了一种基于蛋白质结构数据库的势函数。将该势函数应用于蛋白质反向折叠研究中,发现该函数可成功地将蛋白质分子的天然构象从构建的构象库中识别出来;将一目标序列与构象库的每一可能的构象匹配,并用该势函数计算相应的能量,结果表明对绝大多数蛋白质分子来说,天然的构象的能量值总是最低。此外,该函数还将一些序列相似性较低,而结构相似性较高的蛋白质分子识别出来。我们认  相似文献   
34.
Membrane vesicles of Escherichia coli can be produced by 2 different methods: lysis of intact cells by passage through a French pressure cell or by osmotic rupturing of spheroplasts. The membrane of vesicles produced by the former method is everted relative to the orientation of the inner membrane in vivo. Using NADH, D-lactate, reduced phenazine methosulfate, or ATP these vesicles produce protonmotive forces, acid and positive inside, as determined using flow dialysis to measured the distribution of the weak base methylamine and the lipophilic anion thiocyanate. The vesicles accumulate calcium using the same energy sources, most likely by a calcium/proton antiport. Calcium accumulation, therefore, is presumably indicative of a proton gradient, acid inside. The latter type of vesicle, on the other hand, exhibits D-lactate-dependent proline transport but does not accumulate calcium with D-lactate as an energy source. NADH oxidation or ATP hydrolysis, however, will drive the transport of calcium but not proline in these vesicles. Oxidation of NADH or hydrolysis of ATP simultaneous with oxidation of D-lactate does not result in either calcium or proline transport. These results suggest that the vesicles are a patchwork or mosiac, in which certain enzyme complexes have an orientation opposite to that found in vivo, resulting in the formation of electrochemical proton gradients with an orientation opposite to that found in the intact cell. Other complexes retain their original orientation, making it possible to set up simultaneous proton fluxes in both directions, causing an apparent uncoupling of energy-linked processes. That the vesicles are capable of generating protonmotive forces of the opposite polarity was demonstrated by measurements of the distribution of acetate and methylamine (to measure the ΔpH) and thiocyanate (to measure the Δψ).  相似文献   
35.
An attempt at demonstrating lateral power transmission over millimeter distances along a coupling membrane has been undertaken. Trichomes of the multicellular filamentous cyanobacteria Phormidium uncinatum were illuminated with a very narrow light beam forming a light spot that covered only 4–5% of a 1–2 mm long cyanobacterial trichome. Such illumination was found to support motility (gliding along agar surface) of the trichome under conditions when the light was the only energy source. It was also shown that illumination with the light spot caused rotation of rings of slime (accompanying the operation of the ‘motors’ responsible for the motility of cyanobacteria) not only in the illuminated, but also in the distal, nonilluminated part of the trichome. Electric potential transmission along trichomes was revealed by means of the extracellular electrode technique. The light spot was found to induce generation of an electric potential difference between two electrodes in the dark region of the trichomes, which were placed at different distances from the illuminated end. Cutting the trichomes between the light spot and the closest ‘dark’ electrode abolished this effect. Valinomycin + K+ and carbonyl cyanide p-trifluoromethoxyphenylhydrazone affected the potential difference formation between two ‘dark’ electrodes much stronger than that between a light and a dark electrode. All the light spot-induced effects develop in the seconds time scale. Both the amplitudes and the kinetics of the potential difference measured with four electrodes placed along the trichome prove to be in good agreement with the theoretical curves computed on the basis of the electric cable equation. It is concluded that transcellular power transmission in the form of Δψ takes place along trichomes of cyanobacteria. This confirms the hypothesis about the biological function of Δψ as a transportable form of energy.  相似文献   
36.
Franklin Fuchs  Charles Fox 《BBA》1982,679(1):110-115
A simple double-isotope procedure has been developed for making simultaneous measurements of bound Ca2+ and relative force in glycerinated rabbit psoas bundles containing two fibers. With this preparation it is possible to study Ca2+-troponin interactions coincident with MgATP-induced force development. Over the free [Ca2+] range 6 · 10?8–1.2 · 10?5 M the bound Ca2+ varied from 0.25 to 1.65 μmol/g protein. The free [Ca2+] at half-maximal Ca2+ saturation was 2 · 10?7 M while that a half-maximal force was 5 · 10?7 M. Half-maximal Ca2+ saturation was associated with 20% maximal force. The force-[Ca2+] saturation curve showed a steep rise in slope at greater than half saturation. The observed relationship was consistent with a model in which multiple occupancy of troponin Ca2+-binding sites is essential for initiation of cross-bridge cycling.  相似文献   
37.
It is shown that scanning force microscopy (SFM), operated in the attractive mode, can be used to obtain high resolution pictures of adsorbed fibrinogen molecules on solid surfaces, without the need for staining or special microscope grids. SFM also reveals the three-dimensional structure of the adsorbed molecules. Two forms of adsorbed fibrinogen are demonstrated on hydrophobic silicone dioxide surfaces; a trinodular about 60 nm long and a globular with about a 40 nm diameter. Polymeric networks formed after storage of the surface with adsorbed fibrinogen in PBS for 11 days are also shown. The SFM-results for the trinodular structure suggest the existence of loops or peptide chains extending outside the basic structure of the fibrinogen molecule.  相似文献   
38.
生态系统稳定性研究   总被引:34,自引:5,他引:29  
岳天祥  马世骏 《生态学报》1991,11(4):361-366
  相似文献   
39.
The ATPase complex of submitochondrial particles exhibits activity transitions that are controlled by the natural ATPase inhibitor (Gómez-Puyou, A., Tuena de Gómez-Puyou, M. and Ernster, L. (1979) Biochim. Biophys. Acta 547, 252–257). The ATPase of intact heart mitochondria also shows reversible activity transitions; the activation reaction is induced by the establishment of electrochemical gradients, whilst the inactivation reaction is driven by collapse of the gradient. In addition it has been observed that the influx of Ca2+ into the mitochondria induces a rapid inactivation of the ATPase; this could be due to the transient collapse of the membrane potential in addition to a favorable effect of Ca2+-ATP on the association of the ATPase inhibitor peptide to F1-ATPase. This action of Ca2+ may explain why mitochondria utilize respiratory energy for the transport of Ca2+ in preference to phosphorylation. It is concluded that the mitochondrial ATPase inhibitor protein may exert a fundamental regulatory function in the utilization of electrochemical gradients.  相似文献   
40.
DNA penetration from T4 phage adsorbed to Escherichia coli was measured at different membrane potentials. There was a precipitous reduction in DNA penetration between 110 mV and 60 mV. This threshold of membrane potential for DNA penetration is independent of ΔpH and rather insensitive to external pH between 6 and 8.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号